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To the best of our knowledge, the stability problem for a plane interface between two 
phases in the process of phase transformation was initially formulated in Sekerka's work [1] 
on the solidification of one component of a binary alloy. In the present study we are con- 
cerned mainly with this specific problem, but our results can, with certain reservations, be 
applied to the process of crystallization from a supercooled liquid if the process is de- 
scribed by the Stefan problem in the isotropic approximation [2]. 

Sekerka's work [i] suffers from a significant shortcoming insofar as the temporal decay 
of the velocity of the front is disregarded and, accordlngly, a conclusive answer is not 
obtained as to the stability of a plane interface. Here we determine the pattern of evolu- 
tion of the distortions of a plane interface with time in the linear approximation. We also 
give previously obtained results [3] of an investigation of the stability of spherical growth 
of a nucleus of the new phase. Although [3] referred to the stability of electron-hole 
droplets in semiconductors, its results are of a general nature and can be used to describe 
the above-mentloned phase transformations. 

_1. Model of Solidiflcation of a Binary Allo 7. We assume that a matrix of one material 
contains particles of another substance (solution), forming an alloy. If the heat transfer 
between both substances is sufficiently effective, it can be assumed that the temperature is 
equal to the temperature of the matrix T. It is postulated that for a certain concentration 
of the solutlon particles they form another modification by a first-order phase transition. 
It is assumed that the nature of these two phases is inconsequential, since the problem is 
treated in the isotropic approximation, i.e., the solution is actually regarded as a super- 
saturated vapor, and the new, denser phase as a condensed liquid. Normally the degree of 
supersaturation ~n = n - n T (where n T is the saturated vapor density and n is the vapor 
density) is always small in comparison with the density of the condensed phase N, and indeed 
we consider this to be true below. Following the stage of formation of a critical nucleus, 
disregarded here, the phase transformation process entails the diffusion of solution particles 
toward the surface of the condensed phase with subsequent condensation on that surface. Thus, 
the equation for the diffusion of solution particles through the matrix must hold in the vapor: 

On/Ot =DAn,  (1.1) 

where D is the diffusion coefficient. 

The following condition must hold at the phase interface: 

his = nT(~ + 2a/lVRr), (1.2) 

where ~ is the coefficient of surface tension and R is the radius of curvature of the surface 
[4]. We thus assume that the condensation is a slow process and the conditions are close to 
thermodynamic equilibrium (this problem is analyzed in more detail in [3]). Another condi- 
tion follows from the mass conservation principle: 

DOn/Ovls = u~N, (1.3) 

where v 9 is the normal velocity of the condensation front as specified by the surface S(t). 
At large distances from the front 

n[r_~ = n . > n  T. 

The case of formation of a solid phase from a supercooled liquid differs from the one 
discussed above insofar as during transition the pressure (rather than the matrix temperature) 
is assumed to be constant, whereas the temperature varies from a certain value T, lower than 
the malting point T M in the liquid to the melting point at the surface: 

T~s = T~ (I -- 2~/NqrR)~ (I. 2a) 
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where qT is the heat of phase transformation. The heat flux admitted to the interface sets 
it in motion, in which case 

-- c%OT/Ovls = v~qT~ (i. 3a) 

where c is the heat capacity and X is the thermal dlffusivlty of the liquid. The heat-con- 
duction equation must hold in the liquid: 

OT/at = %AT. (l.la) 

It is seen at once that Eqs. (1.1a)-(l.3a) differ from (1.1)-(1.3) only by a change of nota- 
tion and correspond to the Stefan problem [2]. We abide by the notation of (1.1)-(1.3). The 
results of our investigation can be applied to the condensation of a vapor in air if the 
latter is regarded as the matrix, which maintains a constant temperature. 

We consider the motion of a plane condensation or crystallization front. Normally the 
effort to sustain such a plane front stems from the desire to obtain a good homogeneous 
crystal. Inasmuch as ~n/N << i, diffusion is incapable of transporting the required quantity 
of solute to ensure motion of a plane front with a constant v eelocity (unlike the assumption 
made in [i]). However, a self-slmilar solution no = no(z/2VDt) exists, where 

X2 Z 
n o (u) = n .  + A .~ e -  dx, u = 2 ]/-----~t" ( 1 . 4 )  

The corresponding interface is given by the equation zo = 2uo D~[, where the constants A and 
uo are evaluated from the boundary conditions (1.2) and (1.3). In the limit of small ~n/N 
we obtain (~n = n~-- n T) 

uo ~-- 8nlV=-N, A ": 28nlV~.  (I. 5) 

We now study the behavior of small perturbations of the solution (1.4), for the time being 
considering one Fourier component, and putting 

n = n o (u) + 1~ (z, t) o i'p, ( 1 . 6 )  

where fk(z, t) is a small quantity associated with the small variation of the interface sur- 
face 

Zo = 2uo ]/D-t -t- ~k (t) e m~ (1 .7 )  

and the vectors k and p are situated in the xy plane, which is parallel to the unperturbed 
interface. The function fk(z, t) obeys the equation 

Ofk/Ot = D( O2[k/Oz 2 -- k'f~). (1.8)  

After linearization, the boundary conditions (1.2) and (1.3) assume the form 

]zo N = nzyk2~h "D- Vk~k; (1.9) h + ~Jo~ ~ = 

N d~ N O'n~ l I (I.i0) at ='-ff V~ +D~'"~z2 "o + Dj-~'z zo' 

where vo = d z o / d t  = uo De'flit, v k = (nT/N)TDk a, ? .. o/NT. 

From Eqs. (1.8)-(1.10) we can obtain an integral equation relating fk to its value fko 
at the boundary z ffi zo(t) and the quantity ~k(t), provided that we use the Fourier transform 
with respect to the variable z: 

i $ e--Vk'(t-~) exp[ (Z--Zo(X))' ] 

(1.n) 
[ z--z~ d:h ('r)] d,~_.~. S exp[--D(k'-{-q')tmciqz]fq]t=odq �9 x 140(~)2(t_x) N d~ ] 

The last term can be dropped, since it tends rapidly to zero and is not associated with the 
existence of a moving boundary. 

Equation (1.11) can be transformed into an integral equation for the displacement of the 
front ~k by passing to the limit z § Zo(t) therein. It is necessary to exercise the usual 
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caution here, because the denominator of the first tem in the 5rackets decays to zero as 
(t-- T)~/a and convergence is attributable to the factor exp [(--z - z0(~))z/(4D(t -- ~))]. For 
small differentials ~z = z -- zo(t) this consideration.will be important only near t = T, and 
so the singular part of this term can be written approximately as 

.t 

f~o(O~,~ lira 6z [  
4 

0 

From this result we finally obtain for z 
f 

/no (t) = ~ Vt--"~--~ exp 

(t - ))8/~ d~ _~ &~ (0. 

= z o  (t) 

�9 ) _ (~o ( t )  - =o ('~))'] [, =o ( t )  - =o (~) 
"~ ~ ~ J L ~~ ('~) 2 (t- . ,)  N ~k (~)]. d~ j (l. 12) 

Expressing fko(t) in terms of ~k(t) according to (1.9), we thus arrive at an integral 
equation for ~k(t). However, a certain simplification is possible in connection with the 
smallness of 6n/N and, accordingly, uo and zo. In this regard, we note that 

[z o (t) -- z o (,)Is 2 ] / t  -- l F~ - , - 
4D (t--'~) ---- tt~ ~/~ + ]/:Tr ~ tto << 1" 

We can therefore omit the corresponding exponential. Invoking the boundary condition (1.9) 
as well, we finally obtain 

t 

V C / [t,~--Vo(t)l~k(t)= ~-~ ' . )~ V t - ,  d~i[t~k-Vo('0l VY(V~+V:r)  d~ J" (1.13) 

We analyze only the behavior of ~k(t) for large times, without any concern for how the 
arbitrary constant entering into this asymptotic representation is related to the initial data 
[including fk(t = 0)]. 

The integral of (1.13) contains the factor e -Dka(t -- T), which shows that values of t -- 
T ~ i/Dk a are essential. Neglecting the quantity ~k on the right-hand side of (1.13) and 
taking d~k/dx outside the integral sign for the value T = t, we find that the asymptotic be- 
havior of ~k(t § -) is given by the equation 

i 

[ t ,  o ( t )  - -  vkl ~h (t) = ~ F { ~  d'~, 
0 

and, considering the rapid convergence of the integral, we can set the upper limit of the 
integral equal to infinity. As a result, we obtain 

~ ( t ) =  Bk exp [ i k  (v o (~)- -vk)d '~] .  ( 1 . 1 4 )  

It is seen that the individual Fourier component is always stable; surface tension 
stabilizes the growth of the perturbation, since for large times vo ~ i/~ << v k. However, 
for a fixed time t the argument of the exponential function in (1.14) is positlve for 

 k Dt, (1.15) 

i.e., for 

2UoN 
k 2 < nT~ _V~_ ~ = k 2 (t). ( 1 . 1 6 )  

Thus, as t -~ " a risk is presented by arbitrarily small values of k. We now test the validity 
of the foregoing approximations. First, in connection with the integration in (1.13) 

t - -  ~ I ,,~ nT? _.~ O as t - -~  oo. 
t k~Dt Nu o -VDt  

It is also evident that, since t -- T << t in the characteristic domain of integration, the ~k 
term can indeed by neglected on the right-hand side of (i.13), and the d~k/dT term taken out- 
side the integral sign. 
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We note here that the expression of ~k(t) in the form (1.14) can be deduced from the 
followlng elementary considerations. Because of the smallness of ~n/N the motion of the 
boundary is slow, and the quaslsteady-state approximation is valid: 

a/blOt << ~Df~,  (i. 17) 

i.e., in place of Eq. (1.8) we have 

~V~/Oz ~ = k~]~. 

Clearly, for a solution decaying with z 
O/k/0z = --k/~, 

and on the basis of (1.9) condition (1.10) goes over to 

V 0 ~;k (t) k (v. -- vk) ~ -- D- (vo -- vh) ~ .  (1.18) , - g - =  

Next, we take into consideration the fact that for k ~ k o the first term on the right-hand 
side of (i.18)- =-s/~, while the second is of the order (~n)a/Nt, so that once again we 
obtain ~k(t) in the form (1.14) as t ~ -. Using this result, we can test the quasisteady- 
state condition (1.17). 

Thus, we finally obtain the following expression for the displacement of the interface: 

where 0 is a vector parallel to the phase interface. Inasmuch as small values of k are es- 
sential for large times, for a value of B k that does not have singularities in this k domain 
we obtain 

(p, t) ~ Boy  ]o (kp) e~(h't)kdk, (I. 20) 
0 

where ~(k, t) = k[2uo Dvr~-- (nT/N)ykaDt]. 
values of t by the method of steepest descent, We finally obtain 

where 

Computing the integral with respect to k for large 

o~ = --~ ['27 ] /~nrN-  ~ = 3 ]/~nm 

and J,(y) is the Bessel function of zero order. Of coursed the choice of origin in the basal 
plane is arbitrary. In the general case the surface configuration must be made up of randomly 
distributed perturbations of the type indicated. 

Thus, the plane interface turns out to be unstable, and for large times the perturbation 
does not grow by a simple exponential law, but rather as an exponential function of t ~/~. We 
note that the space scale of the perturbation in the plane of the interface at a time when 
the perturbation becomes appreciable is given by the expression p ~ rcrnT/~n, where rcr = 2~/ 
T~n is the so-called critlcal radius of the nucleus [4]. 

2. Instability of Spherical Growth of Nuclei. This problem, which has been discussed 
in [3], is somewhat simpler than the preceding one, and its solution is also based on the 
smallness of ~n/N, i.e., relatively slow motion of the interface in comparison with the dif- 
fusion process. The spherical growth of a nucleus is described by the diffusion equation 

On/Ot = D A n ,  (2 .1 )  

in which the slow motion of the interface permits ~n/~t to be neglected, so that (~n = n. -- 

n T ) 
~n 

n o = n~ --  --7-- R (t), (2 .2 )  
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where R(t) is the radius of the nucleus and the boundary condition n]s 
Making use of the boundary conditions, we obtain 

dR(t)/dt  = D6n/NR.  

Since the diffusion rate at a distance of order R is v D ~ D/R, in reality the ratio 

t dR ~n 
v D dt "~-N-<<I" 

* n o - 6n is used. 

( 2 . 3 )  

If the shape of the nucleus deviates from spherical, we assume that the vapor density and 
droplet radius are given by the relations 

n = no(r) +] ( f l ,  t , r ) ,  R '  = R(t) + g(fl, t). 

Neglecting the time derivative of f in the diffusion equation (2.1), we have 

] = ~__~ AlraY~m ([)) r - ' -1 ,  ( 2 . 4 )  
l , m  

where YZm(s denotes spherical harmonics. Linearizing the boundary conditions with respect 
to ~, we obtain 

~trnOf-~~ l + A l t o = ,  nTT ( l -  i) (l + 2) 
R R 2 (t) ~t.; ( 2 . 5 )  

a ~ z ~  = o~no I (l + i) A 
D~t,n--~-r2 In - -  D ( 2 . 6 )  "" dt ~ tin, 

where 

(a) = ~ ~z. (t) Y,m (fl). 
l,'m. 

We finally have 

i d~z. ( l - - i )  D an nr~]D(12-- i)(l-~-2) ( 2 .7 )  
~tra dt = ~ N NR a " 

To assess the instability it is necessary to compare the growth of the deviation with the 
growth of the droplet itself R(t) as described by Eq. (2.3). Therefore, the growth-rate 
factor characterizing instability is 

d ~(t) D(l- -  2) 8n nr?D(lZ-- i ) ( / +  2) ( 2 . 8 )  
~z = - -~ - ln  ~(t)  - -  R2N NR 8 

It is evident from this expression that with growth of the nucleus the perturbations lose 
stability with ever-greater 5, because for large radii the surface tension becomes ineffec- 
tual. However, instability first sets in for R = R c when ~ = 3, where 

R= = 407nr/Sn. ( 2 . 9 )  

I t  can  be  s h o w n - t h a t  

~ ~o[R(t)/R~ F-l ,  ( 2 . 1 0 )  

where ~o is of the order of the initial perturbation, which is unknown. Since the exponent 
grows rapidly with ~ and perturbations disrupting the spherical shape always occur in reality, 
we can assume that the characteristic space scale of the resulting droplets must be R ~ R c 
(see also [5]). 

We note in conclusion that the principal mechanism of the above-analyzed instability is 
such that the forward-advancing parts of the front acquire a large diffusion flow and there- 
fore grow more rapidly. 

We have thus shown that both a plane new-phase front and the spherical growth of a single 
nucleus are unstable processes. In the case of a plane portion of the front of finite dimen- 
sions stability can be attained and, accordingly, a homogeneous new phase precipitated if those 
dimensions are made sufficiently small for the given gradient (cutting off small values of k). 

The given statement of the problem is very general and can be applied to a fairly broad 
class of processes associated with the formation of a new phase (neglecting anisotropy) in 
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first-order phase transitions, which include, for example, crystal growth and liquid-vapor 
transitions. In particular, the investigated mechanism can be used to explain the small 
sizes of electron-hole droplets formed in semiconductors [3]. 

The authors are indebted to A. M. Kosevich for calling their attention to the problem. 
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STRUCTURAL CHARACTERISTICS OF SHOCK WAVES FROM UNDERWATER 

EXPLOSIONS OF HELICAL CHARGES 

V. K. Kedrinskii UDC 534.222.2 

Explosive sound sources have intrigued researchers for many years as a principal compo- 
nent of various kinds of sonar devices designed for the transmission of directional quasicon- 
tinuous-wave signals of long duration and large acoustic power. The category of such sources 
is broad and includes spark-discharge generators [i], condensed liquid [2] and solid high ex- 
plosives [3-5], explosive gas mixtures [6-8], and the shock-generating effects of collapsing 
cavities (implosions) [9, I0]. The total energy parameters of the signals from certain ex- 
plosive sound sources in water have been compared [ii], and the spectral characteristics have 
been studied experimentally [12-16]. 

Naturally, explosive sources have considerable power, and their transmission is recorded 
at large distances. These attributes, however, prove inadequate for a broad class of problems 
in geophysical research, sonic navigation, and scientific investigations of the processes of 
shock wave propagation in the ocean. Typical problems are the directivity and relatively long 
duration of the signal, which are not a trivial matter to realize within the framework of ex- 
plosive sources as predominantly "point" sources. An important problem is the tonal "color- 
ing" of the signal to protect it against reverberation noise. It is not too surprising, there- 
fore, that some of the solutions obtained to date have been based on the familiar notions of 
classical acoustics in regard to directional transmission from specially distributed sources. 
The latter represent: an explosive-cord line charge, which ensures shock wave propagation pre- 
dominantly in a plane perpendicular to its axis [5]; a vertical llne array of concentrated 
charges detonated with a definite frequency [3] and thus generating a prescribed sequence of 
shock waves, i.e., to a certain extent solving the problem of the duration and "coloring" of 
the transmitted signal as a result of its directionality. The coherent Jetting effect has 
been utilized in the generation of directional signals by the detonation of a charge in a 
speclally profiled conical liner [4]. 

There has been definite interest lately in sources in the form of spatial helix config- 
urations of a high-exploslve cord (HEC) charge, the transmission from which has a number of 
specific advantages: directivity both in the vicinity of the axis (typical of an annular 
source, owing to the high detonation rate) [17] and in the perpendicular plane (certain model 
of a line source in the case of a long helix); long duration [18]; highly controllable fre- 
quency of succession of shock waves for one given total length of the cord charge [19]. The 
characteristics of the evolution of the wave field from the underwater detonation of such 
charges are of unquestionable interest. Below, we discuss the fundamental results of their 
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